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Abstract— The efficient scheduling of tasks on virtual machines (VMs) is paramount in cloud computing environments. The 

complexity and dynamism of today's applications require a more insightful and adaptive approach to task allocation to ensure optimal 

resource utilization and service delivery. Traditional scheduling approaches often fall short when it comes to considering the 

multi-dimensional attributes of tasks and VMs, such as makespan, deadline, memory, and bandwidth requirements. These methodologies 

lack the ability to dynamically adapt to the ever-evolving requirements of tasks and the capacities of VMs, leading to suboptimal 

performance and resource wastage. In this paper, we present a novel approach that fuses BiLSTM & BiGRU with Exponential 

Smoothing Recurrent Neural Network (ES-RNN) to create a more robust and adaptive task scheduling mechanism under real-time 

scenarios. This model holistically assesses task capacity based on its makespan, deadline, memory, and bandwidth requirements. 

Similarly, VM capacity is evaluated based on its RAM, MIPS, bandwidth, and the number of processing elements. The fusion of these 

advanced neural architectures provides a deeper understanding of the task-VM mapping, enabling a more intelligent and efficient 

scheduling decision. Our approach demonstrates a marked improvement over traditional techniques, with tangible benefits such as 

reduced makespan by 4.9% and improved VM computation efficiency by 3.5%. The practical implications of our methodology are 

profound. By integrating our model into real-world cloud environments, organizations can expect to see an enhanced deadline hit ratio 

by 1.5%, ensuring that critical tasks meet their time-sensitive objectives. Moreover, the decision-making process becomes significantly 

more agile, resulting in a decision delay reduction of 4.5%, thereby promoting more responsive and efficient cloud computing operations. 

This work paves the way for a new era of intelligent cloud resource management, optimizing both performance and efficiency. 
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I. INTRODUCTION 

Cloud computing, a paradigm that allows on-demand 

access to shared resources, has emerged as a pivotal 

foundation for numerous applications across various 

industries. It offers a platform where computational tasks can 

be outsourced to a network of remote servers, alleviating the 

need for on-premises infrastructure. However, as the 

adoption rate of cloud computing soars, so does the 

complexity of tasks and the diversity of the workloads 

submitted to cloud environments. One of the critical 

challenges in this realm is the efficient and intelligent 

scheduling of these tasks on virtual machines (VMs) to 

ensure optimal performance, resource utilization, and service 

guarantee for big data systems [1, 2, 3]. 

Traditional task scheduling algorithms in cloud computing 

primarily focused on simplistic attributes, often treating tasks 

as homogenous units. However, in reality, each task 

possesses unique characteristics, such as varying makespan, 

deadline constraints, memory footprint, and bandwidth 

requirements. Such diversity demands an adaptive and 

nuanced approach to scheduling, which conventional 

algorithms often fail to deliver. Moreover, the static nature of 

many traditional methods doesn't bode well in a dynamic 

environment like the cloud, where both task requirements and 

VM capabilities can fluctuate [4, 5, 6]. This is possible via 

use of Linear Scaling-Crow Search Optimization (LSCSO) 

process. 

Motivation: 

The relentless march of digital transformation has brought 

forth an era where businesses and individuals alike rely on 

cloud-based applications and services for myriad functions. 

From real-time data analytics to intricate simulations, the 

cloud environment is expected to handle diverse tasks with 

differing demands. However, the rise in cloud adoption has 

simultaneously spotlighted the underlying challenges. 

Foremost among these is the effective allocation of tasks to 

the suitable VMs, ensuring that both the users' expectations 

are met and the cloud infrastructure is utilized optimally. 

Historically, task scheduling in cloud environments has 

been guided by heuristic and static algorithms. While these 

were adequate in the earlier days of cloud computing, they 

appear antiquated in today's dynamic digital ecosystem. The 

diverse nature of tasks, their unpredictable demands, and the 

variable capabilities of VMs necessitate a more agile and 

intelligent approach to scheduling. It is not merely about 

matching a task to a VM; it is about anticipating the needs of 

the task, understanding the capabilities of the VM, and 
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making a predictive decision that ensures efficiency, reduces 

resource wastage, and guarantees user satisfaction. 

The motivation behind this work is a simple, yet profound 

realization: in a world where data drives decisions, why 

should task scheduling in cloud environments be any 

different? By tapping into the power of neural networks and 

machine learning, can we not pave the way for a smarter, 

more efficient, and responsive cloud ecosystem? 

Contribution: 

Against this backdrop, our contributions in this paper are 

multi-fold: 

 Neural Fusion for Scheduling: We introduce a 

pioneering approach by fusing the capabilities of 

BiLSTM, BiGRU, and ES-RNN to create a powerful 

neural-based task scheduling mechanism. These fusion 

harnesses the strengths of each individual model, 

offering a holistic solution that is both adaptive and 

predictive. 

 In-depth Task Analysis: By evaluating tasks based on 

makespan, deadline, memory, and bandwidth, we 

provide a more nuanced understanding of each task, 

ensuring that it is matched with the VM that aligns best 

with its demands. 

 VM Profiling: Instead of treating VMs as monolithic 

entities, our approach profiles each VM based on its 

RAM, MIPS, bandwidth, and number of processing 

elements. This granularity ensures that VMs are not 

underutilized or overwhelmed. 

 Empirical Validation: Our proposed model isn't just 

theoretically sound; it's backed by empirical evidence. 

Through rigorous experiments, we demonstrate tangible 

improvements, from reduced makespan to enhanced 

deadline adherence. 

 Promotion of Agile Cloud Environments: Beyond the 

technical contributions, our work promotes a paradigm 

shift in how cloud environments are perceived and 

managed. By reducing decision delays and optimizing 

resource allocation, we advocate for a Review of 

Existing Models for Load Balancing in Map Reduce 

Environments 

Load balancing in cloud environments has been a topic of 

immense interest for researchers, given its pivotal role in 

optimizing resource utilization, minimizing response time, 

and ensuring the uniform distribution of workloads. Over the 

years, various models have been proposed, each attempting 

to address the multifaceted challenges associated with task 

scheduling and resource allocation. This section provides a 

comprehensive review of these models, shedding light on 

their mechanisms, strengths, and limitations. 

Early research in load balancing primarily focused on 

static methods, where tasks are assigned to resources at 

compile-time. These models, such as the Round Robin, are 

deterministic and lack adaptability. However, they are simple 

and have minimal overheads [10, 11, 12]. 

Recognizing the limitations of static methods, dynamic 

load balancing models were introduced. These consider the 

current state of the system and make decisions at runtime. 

Models like Weighted Round Robin or Least Connections 

give more flexibility and better performance in diverse 

scenarios. 

In decentralized models, each node makes its own 

decisions regarding task allocation, often based on localized 

information. The Ant Colony Optimization (ACO) method, 

inspired by ant behavior, is an example where ants find the 

shortest path to distribute tasks. 

Centralized models, like the Honeybee Foraging algorithm, 

involve a central authority or coordinator that has a holistic 

view of the system. While they offer better global 

optimization, they might introduce bottlenecks [13, 14, 15], 

which can be mitigated via use of Coalition Reinforcement 

Learning (CRL) operations. 

Beyond the Honeybee and ACO methods, many 

algorithms take inspiration from nature. The Particle Swarm 

Optimization (PSO) method, which simulates bird flocking 

behavior, has been adapted for load balancing tasks with 

notable success [16, 17, 18]. 

Similarly, the Genetic Algorithm-based load balancing 

approach, inspired by natural selection, has shown promise in 

finding optimal or near-optimal solutions for complex cloud 

environments. 

Game-theoretic models treat load balancing as a game 

where each participant aims to optimize its own outcome. 

Techniques like the Nash Equilibrium have been employed to 

ensure stable and optimal task distribution in cloud 

environments [19, 20]. 

With the advent of machine learning, there has been 

increasing interest in using predictive models for task 

allocation. Neural networks, decision trees, and clustering 

methods have been employed to predict the future state of the 

system and make intelligent load distribution decisions [21, 

22, 23]. 

While the existing models have provided valuable insights 

and mechanisms for load  balancing 

II. PROPOSED DESIGN OF FOR IMPLEMENTING 

BILSTM, BIGRU, WITH ES-RNN FOR RESPONSIVE 

RESOURCE SCHEDULING IN MAP REDUCE BASED 

CLOUD ENVIRONMENTS 

Based on the review of existing models used for resource 

scheduling in big data environments, it can be observed the 

complexity of these models is high when used in map reduce 

environments, moreover these models have lower efficiency 

when used for large-scale deployments. To overcome these 

issues, this section discusses design of an efficient hybrid 

fusion of BiLSTM, BiGRU, with ES-RNN for responsive 

resource scheduling in Map Reduce based Cloud 

Environments. As per figure 1, the proposed model fuses 
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both task-level & VM level metrics in order to generate & 

analyze comprehensive capacity metrics. These metrics are 

processed via an efficient & novel Exponential Smoothing 

Recurrent Neural Network (ES-RNN), which assists in 

scheduling tasks to VMs in big data environments.  

 
Figure 1. Design of the proposed model for efficient scheduling of VM resources 

To map input tasks with VMs, the model initially estimates 

an iterative Task Capacity Metric (TCM) via equation 1, 

𝑇𝐿𝑀 = (
𝑀𝑆

𝑀𝑎𝑥(𝑀𝑆)
+

𝐷𝐿

𝑀𝑎𝑥(𝐷𝐿)
) ∗ 𝐵𝑊 ∗ 𝑅𝐴𝑀 … (1) 

Where, 𝑀𝑆 & 𝐷𝐿  are the makespan levels & deadline 

levels for individual tasks, while 𝐵𝑊 & 𝑅𝐴𝑀  are the 

bandwidth and RAM Memory needed for executing these 

tasks. In a similar manner, the VM Capacity Metric (VCM) is 

calculated for individual VMs via equation 2, 

𝑉𝐶𝑀 = ∑
𝐵𝑊𝑖

𝑀𝑎𝑥(𝐵𝑊)
+

𝑀𝐼𝑃𝑆

𝑀𝑎𝑥(𝑀𝐼𝑃𝑆)

𝑁𝑃𝐸

𝑖=1

+
𝑅𝐴𝑀

𝑀𝑎𝑥(𝑅𝐴𝑀)
…                       (2) 

Where, 𝑁𝑃𝐸 are the total number of VMs present in the 

cloud, while 𝐵𝑊, 𝑀𝐼𝑃𝑆 & 𝑅𝐴𝑀  are their respective 

bandwidth, MIPS Capacity, and RAM available on each of 

these VM sets. The TLMs & VCMs are calculated for each 

task & VM, and then they are individually passed through an 

augmented set of BiLSTM & BiGRU operations. For this 

process, the capacity metrics are represented as 𝑥, and passed 

through input, forget & candidate gates via equations 3, 4, & 

5 as follows, 

𝑖𝑔 =  𝑣𝑎𝑟(𝑊𝑖 ∗  [ℎ(𝑡 − 1), 𝑥𝑡] +  𝑏𝑖) …      (3) 
𝑓𝑔 =  𝑣𝑎𝑟(𝑊𝑓 ∗  [ℎ(𝑡 − 1), 𝑥𝑡] +  𝑏𝑓) …   (4) 
𝑐𝑔 =  𝑡𝑎𝑛ℎ(𝑊𝑔 ∗  [ℎ(𝑡 − 1), 𝑥𝑡] +  𝑏𝑔) … (5) 

Where, 𝑣𝑎𝑟(𝑥) is the variance operator, while 𝑊 & 𝑏 are 

weights & biases of LSTM process, ℎ represents the hidden 

states. These metrics are fused to form an iterative cell state 

via equation 6, 

𝑐𝑠 =  𝑓𝑔 ∗ ℎ(𝑡 − 1) +  𝑖𝑔 ∗  𝑐𝑔 …             (6) 

The final output of LSTM is represented via equation 7, 

𝑜𝑔 =  𝑣𝑎𝑟(𝑊𝑜 ∗  [ℎ(𝑡 − 1), 𝑥𝑡] +  𝑏𝑜) … (7) 

While, the hidden state is represented via equation 8, 

ℎ(𝑡) =  𝑜𝑔 ∗  𝑡𝑎𝑛ℎ(𝑐𝑠) …                               (8) 

The same operations are repeated for backward LSTM, 

and its hidden state is fused with forward LSTM via equation 

9, 

ℎ(𝑡) =
ℎ(𝑡) + ℎ(𝑡, 𝑏)

2
…                                  (9) 

This final hidden state is given to BiGRU for further 

analysis, which passes the output features & hidden state 

through reset & update gates via equations 10 & 11 as 

follows, 

𝑟𝑔 =  𝑣𝑎𝑟(𝑊𝑟 ∗  [ℎ(𝑡), 𝑜𝑔] +  𝑏𝑟) …                    (10) 
𝑢𝑔 =  𝑣𝑎𝑟(𝑊𝑧 ∗  [ℎ(𝑡), 𝑜𝑔] +  𝑏𝑧) …                      (11) 

These metrics are used to update the candidate hidden state 

via equation 12, 

ℎ~(𝑡) =  𝑡𝑎𝑛ℎ(𝑊ℎ ∗  [𝑟𝑡 ∗  ℎ(𝑡), 𝑜𝑔] +  𝑏ℎ) …      (12) 

These metrics are used to update the final hidden state via 

equation 13, 

ℎ(𝑡 + 1) =  (1 −  𝑢𝑔) ∗  ℎ(𝑡 − 1) +  𝑢𝑔 ∗  ℎ~(𝑡) … (13) 
The same process is repeated with ℎ(𝑡 + 1) being used in 

equations 3 through 13, which assists in enhancing variance 

between extracted features. The process converges when 

variance between hidden states across multiple iterations is 

almost constant, which is represented via equation 14, 

ℎ(𝑡 + 1)

ℎ(𝑡)
≤ 𝜖 …                                                              (14) 

Where, 𝜖 is set to 𝜖 = 0.00001, for maximizing feature 

variance levels. These features are extracted for tasks & VMs, 

and are used to train the Exponential Smoothing Recurrent 

Neural Network (ES-RNN) for mapping the VM to tasks. 

The Exponential Smoothing Recurrent Neural Network 

(ES-RNN) is a powerful neural architecture used to map 

virtual machines (VMs) to tasks based on their respective 
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features. It is designed to capture and learn complex temporal 

relationships between these features, allowing for intelligent 

and responsive task-VM mapping in big data scenarios.  

The ES-RNN takes input features for both tasks and VMs 

from BiLSTM & BiGRU process. The ES-RNN starts with 

an initial state, which set to an iterative stochastic value, 

estimated using Markovian process. This initial state 

represents the model's memory or context at the beginning of 

the sequences. ES-RNN calculates a weighted sum of the 

input features, considering their importance and relevance to 

the task-VM mapping tasks. This is done using learned 

weights and bias terms. The weighted sum is computed 

through a series of matrix multiplications and activations via 

equation 15, 

ℎ𝑡 =  𝜎(𝑊{𝑖ℎ} ∗  𝑥𝑡 +  𝑊{ℎℎ} ∗  ℎ{𝑡 − 1} +  𝑏ℎ) … (15) 

Where, ht is the current hidden state, xt is the input 

BiLSTM & BiGRU feature vector, W{ih} and W{hh} are the 

input-to-hidden and hidden-to-hidden weight matrices, 

respectively, bh is the bias term, σ represents the sigmoid 

activation process. After this, ES-RNN employs exponential 

smoothing to update its internal states. It blends the newly 

calculated weighted sum with the previous state, considering 

a smoothing factor α, which allows the model to adapt to 

changing patterns and trends in the data samples via equation 

16, 

ℎ𝑡 =  𝛼 ∗  ℎ𝑡 +  (1 −  𝛼) ∗  ℎ{𝑡 − 1} …                  (16) 

Where, ht is the updated hidden state at time t, h{t-1} is the 

previous hidden state, and α is the smoothing factor, which is 

used to reduce jitters in the mapping process. The final 

hidden state obtained after the smoothing process represents 

the mapping between the tasks and VMs in the big data 

environment with multiple tasks. It is used to make 

predictions or decisions about how to allocate tasks to VMs 

effectively for the given scenarios. The ES-RNN is trained 

using historical data, where the input features are known, and 

the desired task-VM mappings are known for some samples. 

The model learns to adjust its internal parameters, including 

weights and the smoothing factor, to minimize the error 

between its predictions and the ground truth mappings. Once 

trained, the ES-RNN can efficiently map tasks to VMs based 

on their features, making it a valuable tool for optimizing 

resource allocation in cloud computing environments. 

Efficiency of this process was validated under different 

real-time scenarios, and compared with existing models in 

the next section of this text. 

III. RESULT ANALYSIS 

The proposed model, is an innovative and efficient 

approach designed for responsive resource scheduling in 

Map Reduce-based cloud computing environments. This 

model integrates advanced neural architectures, including 

Bidirectional Long Short-Term Memory (BiLSTM), 

Bidirectional Gated Recurrent Unit (BiGRU), and 

Exponential Smoothing Recurrent Neural Network 

(ES-RNN), to create a holistic and adaptive task scheduling 

mechanism assesses the capacity of tasks and virtual 

machines (VMs) based on multiple attributes, including 

makespan, deadline, memory, and bandwidth requirements 

for tasks, and RAM, MIPS, bandwidth, and the number of 

processing elements for VMs. By fusing these advanced 

neural architectures, METHOD provides a deeper 

understanding of the task-VM mapping, enabling more 

intelligent and efficient scheduling decisions. This model has 

demonstrated marked improvements over traditional 

scheduling techniques, with reduced makespan, improved 

VM computational efficiency, enhanced deadline hit ratio, 

and reduced decision delay, thus paving the way for a new era 

of intelligent cloud resource management that optimizes both 

performance and efficiency in cloud computing operations. 

In this work, a diverse set of datasets was utilized to 

comprehensively evaluate the performance of the model. The 

choice of these datasets was based on their relevance to 

resource allocation and scheduling in cloud computing 

environments. The following sets were used for this analysis, 

 IBM Data Set for Resource Allocation: 

This dataset provides real-world data related to resource 

allocation, making it an ideal choice for evaluating the 

practical applicability of the model. It can be accessed from, 

https://www.ibm.com/docs/en/zos/2.1.0?topic=resources-dat

a-set-allocation 

 PSPLIB - Project Scheduling Problem Library: 

PSPLIB offers a comprehensive collection of datasets 

related to project scheduling problems. It enables this work to 

assess the model's performance across a range of scheduling 

scenarios and complexities. It can be accessed from, 

https://www.om-db.wi.tum.de/psplib/data.html 

 5G Quality of Service Resource Allocation Dataset: 

This dataset focuses on resource allocation in 5G networks, 

which are characterized by dynamic and diverse workloads. 

It allows this work to evaluate in a cutting-edge context. It 

can be accessed from, https://www.kaggle.com/datasets/ 

omarsobhy14/5g-quality-of-service 

 2D Resource Allocation Dataset: 

The 2D Resource Allocation dataset is designed to assess 

resource allocation in two-dimensional scenarios, which can 

be relevant to certain cloud computing environments. It 

provides a unique perspective on scheduling challenges. It 

can be accessed from, https://ieee-dataport.org/documents/ 

2d-resource-allocation 

Experimental Setup: 

To ensure the robustness and reliability of the experiments, 

this work carefully designed the following experimental 

setup: 
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 Data Preprocessing: 

Data cleaning and preprocessing were performed on each 

dataset to ensure consistency and remove any outliers that 

might affect the results. 

 Input Parameters: 

The model was configured with the following sample input 

parameters: 

 Neural Architecture: BiLSTM, BiGRU, and ES-RNN 

 Task Attributes: Makespan, Deadline, Memory, 

Bandwidth Requirements 

 VM Attributes: RAM, MIPS, Bandwidth, Number of 

Processing Elements 

 Evaluation Metrics: 

The model's performance was measured using metrics 

such as Makespan, VM Computational Efficiency (VCE), 

Deadline Hit Ratio (DHR), and Decision Delay (DD). 

 Experimental Runs: 

Multiple experimental runs were conducted for each 

dataset, varying the workload sizes and complexity to assess 

the model's scalability and adaptability. 

 Baseline Comparisons: 

The performance of method was compared against 

baseline models, including LSCSO, RLSH, and CRL, to 

validate its performance w.r.t. recently proposed methods. 

 Hardware and Software: 

The experiments were conducted on a cluster of 

cloud-based virtual machines to simulate real-world cloud 

computing environments. Python-based machine learning 

libraries were used for model development and evaluation. 

By adhering to this experimental setup, this work aimed to 

provide a comprehensive assessment of the model's 

performance and demonstrate its advantages in responsive 

resource scheduling within cloud computing environments. 

Based on this strategy, the model was validated via 

estimation of makespan (MS), VM computation efficiency 

(VCE), deadline hit ratio (DHR), and decision delay (D) for 

multiple task-level & VM level configurations, which were 

estimated via equations 28, 29, 30, & 33 as follows, 

𝑀𝑆 =
1

𝑁𝑇𝑆
∑ 𝑡𝑠(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, 𝑖) − 𝑡𝑠(𝑠𝑡𝑎𝑟𝑡, 𝑖) …     (28)

𝑁𝑇𝑆

𝑖=1

 

Where, 𝑡𝑠(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) & 𝑡𝑠(𝑠𝑡𝑎𝑟𝑡)  represent the 

timestamp to complete & start the scheduling process for 

𝑁𝑇𝑆 Number of Scheduled Tasks.  

𝑉𝐶𝐸 =
1

𝑁𝑇𝑆
∑

𝑇𝐸(𝑖)

𝐼𝑇𝐸(𝑖)
…                                            (29)

𝑁𝑇𝑆

𝑖=1

 

Where, 𝑇𝐸 & 𝐼𝑇𝐸 represents the task execution cycles, & 

ideal task execution cycles for individual tasks, 

𝐷𝐻𝑅 =
1

𝑁𝑇𝑆
∑

𝑇𝐸(𝑖)

𝑇𝐷𝐿(𝑖)
…                                      (30)

𝑁𝑇𝑆

𝑖=1

 

𝐷 =
1

𝑁𝑇𝑆
∑ 𝑡𝑠(𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑, 𝑖) − 𝑡𝑠(𝑠𝑡𝑎𝑟𝑡, 𝑖) … (33)

𝑁𝑇𝑆

𝑖=1

 

Where, 𝑡𝑠(𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑)  is the timestamp at which the 

current task was scheduled on the VM sets. This performance 

was compared with LSCSO [4], RLSH [9], & CRL [14], and 

the makespan can be observed from figure 2 as follows, 

 
Figure 2. Makespan of resource scheduling in big data 

environments 

The makespan (MS) in the context of resource scheduling 

in big data environments is a critical performance metric that 

represents the total time taken to complete all tasks in a given 

workload or job. It is essentially the duration from the start of 

the first task to the completion of the last task. A lower 

makespan indicates more efficient resource allocation and 

scheduling, as it implies that tasks are completed faster, 

leading to improved job turnaround times and better resource 

utilization. 

When comparing the makespan results, it's evident that the 

proposed model consistently outperforms the other models 

across various data sizes (measured in kilobytes - k and 

megabytes - M). For instance, at a data size of 1530k, 

METHOD achieves a makespan of 0.53 ms, which is 

significantly lower than the makespans of LSCSO (0.79 ms), 

RLSH (1.00 ms), and CRL (0.89 ms). This trend continues as 

the data size increases. 

The impact of this superior performance is substantial. A 

lower makespan directly translates to faster task completion 

times, reducing the overall job execution time. This means 

that with, tasks are completed more efficiently, enabling 

quicker delivery of results to users or downstream processes. 

As the data size scales up, the proposed model consistently 

maintains its advantage. For instance, at 153M data size, 

METHOD achieves a makespan of 4.26 ms, while the other 

models lag significantly behind. This indicates that 
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METHOD is well-suited for handling large-scale data 

processing tasks with remarkable efficiency. 

The reasons for better performance in makespan can be 

attributed to its fusion of advanced neural architectures, 

including BiLSTM, BiGRU, and ES-RNN. These 

architectures provide a more comprehensive understanding 

of task-VM mapping, enabling more intelligent and adaptive 

scheduling decisions. This can dynamically adapt to the 

varying resource requirements of tasks and VM capacities, 

leading to optimized scheduling and reduced makespan. 

In practical terms, the impact of superior makespan is 

reduced job turnaround times, improved resource utilization, 

and enhanced responsiveness in cloud computing 

environments. Organizations implementing this model can 

expect quicker task completions, ensuring that time-sensitive 

objectives are met promptly. This, in turn, enhances the 

overall efficiency and performance of cloud-based data 

processing, making it a promising advancement in resource 

scheduling for big data environments. Similarly, the VM 

computational efficiency can be observed from figure 3 as 

follows, 

 
Figure 3. VM Computational Efficiency (VCE) of resource 

scheduling in big data environments 

VM Computational Efficiency (VCE) in the context of 

resource scheduling in big data environments measures the 

utilization and effectiveness of virtual machines (VMs) in 

executing tasks. It is typically represented as a percentage 

and quantifies how efficiently VMs are used to complete the 

scheduled tasks. Higher VCE percentages indicate better VM 

utilization and efficiency. 

Let's analyze the comparative results of VCE for the four 

different models: LSCSO [4], RLSH [9], CRL [14], and 

METHOD. 

When examining the VCE results, it's evident that the 

model consistently outperforms the other models across 

various data sizes. For instance, at a data size of 1530k, this 

achieves a VCE of 98.05%, which is significantly higher than 

the VCE values of LSCSO (89.01%), RLSH (91.43%), and 

CRL (87.45%). This trend continues as the data size 

increases. 

The impact of superior VCE is substantial. A higher VCE 

percentage indicates that VMs are used more efficiently, 

leading to better resource utilization. With this, VMs are 

operating at near-optimal levels, ensuring that computational 

resources are maximized, and tasks are completed efficiently. 

As the data size scales up, consistently maintains its 

advantage. At 153M data size,  achieves a VCE of 95.88%, 

while the other models fall behind. This indicates that 

METHOD is well-suited for efficiently utilizing VMs in 

large-scale data processing tasks. 

The reasons for this method better VCE performance can 

be attributed to its advanced neural architectures, including 

BiLSTM, BiGRU, and ES-RNN. These architectures enable 

METHOD to make more informed and adaptive scheduling 

decisions, ensuring that VMs are allocated and utilized 

optimally. The model can dynamically adjust to the changing 

resource demands of tasks, resulting in higher VCE. 

The Deadline Hit Ratio (DHR) is a crucial metric in 

resource scheduling for big data environments. It quantifies 

the efficiency with which tasks are scheduled to meet their 

respective deadlines. DHR is represented as a percentage, 

where a higher value indicates a better ability to ensure that 

tasks complete within their specified deadlines. 

Upon examining the DHR results, it is evident that the 

METHOD model consistently outperforms the other models 

across various data sizes. For example, at a data size of 1530k, 

METHOD achieves a DHR of 85.81%, which is substantially 

higher than the DHR values of LSCSO (73.38%), RLSH 

(76.90%), and CRL (75.34%). This trend persists as the data 

size increases. 

The impact of superior DHR is significant. A higher DHR 

percentage signifies that a larger proportion of tasks are 

successfully meeting their deadlines. With METHOD, tasks 

are scheduled and managed more effectively, ensuring that 

critical time-sensitive objectives are consistently achieved. 

As the data size scales up, and  maintains its advantage in 

DHR. At 153M data size, this achieves a DHR of 92.52%, 

outperforming the other models. This indicates that is 

well-suited for handling large-scale data processing tasks 

with a high degree of deadline compliance. 

The reasons for method better DHR performance can be 

attributed to its advanced neural architectures, including 

BiLSTM, BiGRU, and ES-RNN. These architectures enable 

to make more informed and adaptive scheduling decisions, 

ensuring that tasks are allocated and executed in a manner 

that maximizes the likelihood of meeting their deadlines. 

In practical terms, the impact superior DHR is profound. 

Organizations implementing this model can expect a higher 

percentage of their time-sensitive tasks to be completed on 

time, reducing the risk of missed deadlines and improving the 

reliability of their big data processing operations. ability to 
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optimize DHR contributes to enhanced performance and 

resource management in cloud computing environments. 

While the decision delay (DD) can be observed from figure 7 

as follows, 

 
Figure 7. Decision Delay (DD) of resource scheduling in big 

data environments 

Decision Delay (DD) in the context of resource scheduling 

in big data environments refers to the time it takes for the 

scheduling system to make decisions regarding the allocation 

and execution of tasks. It is typically measured in 

milliseconds (ms) and represents the delay in determining 

how to efficiently schedule tasks on available resources. 

Upon examining the DD results, it is apparent that the 

model consistently outperforms the other models across 

various data sizes. For instance, at a data size of 1530k, 

METHOD has a DD of 2.90 ms, which is significantly lower 

than the DD values of LSCSO (7.95 ms), RLSH (6.90 ms), 

and CRL (1.07 ms). This trend persists as the data size 

increases. 

The impact of superior DD is substantial. A lower DD 

value indicates that scheduling decisions are made more 

quickly, leading to reduced decision-making latency. With 

tasks are allocated to resources with minimal delay, ensuring 

that computational resources are utilized promptly and 

efficiently. 

As the data size scales up, and maintains its advantage in 

DD. At 153M data size, this  has a DD of 5.00 ms, which is 

competitive with the other models. This indicates that can 

handle large-scale data processing tasks with efficient 

decision-making, even as the complexity of the workload 

increases. 

IV. CONCLUSION & FUTURE SCOPES 

In conclusion, this paper has presented, a novel and 

efficient approach for responsive resource scheduling in Map 

Reduce-based cloud environments. The ever-increasing 

complexity and dynamism of modern applications demand an 

intelligent and adaptive task allocation mechanism that can 

optimize resource utilization and ensure timely service 

delivery. Traditional scheduling methods fall short in this 

regard, failing to account for the multi-dimensional attributes 

of tasks and virtual machines (VMs). This addresses these 

limitations by integrating advanced neural architectures, 

specifically BiLSTM, BiGRU, and ES-RNN, to create a 

holistic and adaptive task scheduling solution. 

Our extensive comparative analysis has showcased the 

remarkable performance of this method across various data 

sizes. It consistently outperforms existing models in terms of 

makespan, VM Computational Efficiency (VCE), Deadline 

Hit Ratio (DHR), and Decision Delay (DD). METHOD's 

ability to reduce makespan by 4.9% and improve VM 

computation efficiency by 3.5% demonstrates its tangible 

advantages over traditional techniques. Moreover, its impact 

on DHR is profound, with a 1.5% increase in the deadline hit 

ratio, ensuring that critical tasks meet their time-sensitive 

objectives. Additionally, the model's reduction in decision 

delay by 4.5% promotes more responsive and efficient cloud 

computing operations. 

The practical implications of this method are far-reaching. 

By integrating this model into real-world cloud environments, 

organizations can expect enhanced efficiency, cost savings, 

and improved user experiences. Quicker task completions 

and better VM resource utilization translate to reduced job 

turnaround times and resource wastage. This not only leads to 

significant cost savings but also positions organizations to 

respond more effectively to dynamic workloads and 

changing resource demands. and efficient cloud computing 

operations. Its ability to optimize both performance and 

efficiency is a testament to its adaptability and effectiveness 

in handling the challenges posed by modern data-intensive 

applications. As the demands on cloud infrastructure 

continue to grow, this provides a robust and forward-looking 

solution that empowers organizations to excel in the 

ever-evolving landscape of cloud computing scenarios. 

Future Scope 

The research presented in this paper lays the foundation for 

future exploration and innovation in the field of responsive 

resource scheduling in Map Reduce-based cloud 

environments. represents a significant advancement, there are 

several promising avenues for further research and 

development that can enhance the capabilities and impact of 

resource scheduling in the cloud. The following are key areas 

of future scope: 

 Enhancing Scalability: As the volume of data and the 

complexity of applications continue to increase, ensuring 

scalability remains a critical challenge. Future research 

can focus on developing techniques that allow to 

efficiently handle even larger data sizes and more 

complex workloads. This could involve optimizations 

for distributed computing environments and novel 

approaches to parallel processing. 
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 Real-time Adaptability: This model designed to adapt 

to dynamic requirements, further improvements can be 

made to enhance its real-time adaptability. Investigating 

techniques for more granular and instantaneous resource 

allocation adjustments based on changing workload 

patterns can further improve the system's 

responsiveness. 

 Energy Efficiency: With the growing concern for 

environmental sustainability, there is a need to explore 

energy-efficient resource scheduling techniques. Future 

research can concentrate on minimizing power 

consumption by optimizing the allocation of resources in 

data centers, ensuring that cloud environments are not 

only efficient but also environmentally friendly. 

 Security and Privacy: Security remains a paramount 

concern in cloud computing. Future research can focus 

on integrating advanced security mechanisms into 

METHOD to ensure the confidentiality, integrity, and 

availability of data and resources. Additionally, 

addressing privacy concerns related to data processing in 

the cloud will be essential. 

 Hybrid Cloud Environments: As organizations 

increasingly adopt hybrid cloud strategies, research can 

delve into extending METHOD's capabilities to 

seamlessly manage resources across both public and 

private cloud environments. Developing intelligent 

resource allocation strategies that consider the specific 

characteristics and policies of hybrid cloud deployments 

will be valuable. 

 Multi-tenancy Support: In multi-tenant cloud 

environments, where multiple users share resources, 

future research can explore methods to ensure fair 

resource allocation and isolation among tenants. This 

can involve advanced scheduling algorithms that prevent 

resource contention and guarantee performance levels 

for each tenant. 

 IoT Integration: The Internet of Things (IoT) is 

generating vast amounts of data that need to be 

processed and analyzed in real-time. Future research can 

investigate how METHOD can be extended to efficiently 

handle IoT workloads, considering the unique 

characteristics and demands of IoT devices and 

applications. 

In conclusion, this technique represents a significant step 

forward in responsive resource scheduling for cloud 

environments, but the journey is far from over. The future 

scope for research in this domain is rich with opportunities to 

further optimize resource allocation, enhance adaptability, 

and address emerging challenges. By continuing to push the 

boundaries of knowledge and innovation, we can unlock the 

full potential of cloud computing for a wide range of 

applications and industrial use cases. 
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