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 Abstract- Model Predictive Control (MPC) is a powerful model based control technique, which explicitly optimizes the overall 

performance of a system to be controlled. Also, it employs an explicit prediction model of the plant to optimize future plant 

behaviour. Artificial Neural Networks (ANNs), originally inspired by the ability of the human beings to perform many complicated 

tasks with ease, are used as an attractive tool to model complex relationships between inputs and outputs, and applied to various 

areas. More over neural networks (NNs) are effective models for identifying complex nonlinear and uncertain systems. Therefore 

neural network is suitable selection to identify complex nonlinear systems for MPC and design of training algorithm is an 

important task for neural network based model predictive control system. The primary intention of research is to design a model 

predictive control (MPC) using integration of Levenberg- Marquardt (LM) based back propagation (BP). 
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I. INTRODUCTION 

 Model predictive control (MPC) is an advanced 

method of process control that has been in use in the process 

industries such as chemical plants and oil refineries .It also 

been used in power system balancing models. Model 

predictive controllers rely on dynamic models of the 

process, most often linear empirical models obtained by 

system identification.  

The main advantage of MPC is the fact that it allows 

the current timeslot to be optimized, while keeping future 

timeslots in account. MPC has the ability to anticipate future 

events and can take control actions accordingly. Earlier PID 

and LQR controllers do not have this predictive ability. 

MPC is a digital control. Represents the behavior of 

complex dynamic system and can handle large time delays 

and high order dynamics .MPC can predict the changes in 

the dependent variables of the modeled system that will be 

caused by changes in the independent variables.  

MPC uses the current plant measurements, the 

current dynamic state of the process, the MPC models, and 

the process variable targets and limits to calculate future 

changes in the dependent variables. Linear MPC approaches 

are used in the majority of applications with the feedback  

mechanism of the MPC compensating for prediction errors 

due to structural mismatch between the model and the 

 

 

 

 

process. Linear models are not sufficiently accurate to 

represent the real process nonlinearities. In some cases, the  

process variables can be transformed before and/or after the 

linear MPC model to reduce the nonlinearity.  

The process can be controlled with nonlinear MPC 

that uses a nonlinear model directly in the control 

application. The nonlinear model may be in the form of an 

empirical data fit (e.g. artificial neural networks) or a high-

fidelity dynamic model based on fundamental mass and 

energy balances.MPC is based on iterative, finite horizon 

optimization of a plant model. Nonlinear Model Predictive 

Control, or NMPC, is a variant of model predictive control 

(MPC) requires the iterative solution of optimal control 

problems on a finite prediction horizon. While these 

problems are convex in linear MPC, in nonlinear MPC they 

are not convex anymore.  

MPC took more time to complete the controller 

calculation. The choice of the model (linear /nonlinear )is 

crucial. Models using feedback mechanism of MPC 

compensating for prediction error. Linear model MPC are 

not sufficiently accurate to represent the real process non 

linearity's .Linear model of MPC algorithm results 

optimization problem ie., quadratic programming. Non- 

linear results in poor closed loop performance and 

instability. Non linear model used in prediction purpose will 

lead to non quadratic non convex and even multimodal 

optimization problem. 

In the existing MPC based on non linear control 

there is no trained offline to minimize a control relevant to 

cost function. A non linear constrained optimization 

problem for MPC should be solved at each step sampling 

period, which lead to computationally too demanding for 
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online implementation. Model Prediction Control is not 

applicable to fixed structure control process .There will be a 

time varying delay on stability analysis and arbitrary large 

control rate causes the system unstable and the system will 

be divergent. The main drawback of nonlinear MPC is the 

time processing needed to reach the optimal solution. 

 

II. LITERATURE REVIEW 

 

Literature presents several method for model predictive 

control system. Here are some of the latest methods 

available. Hong-Gui Han et al.[1] introduces a real-time 

model predictive control (RT-MPC) based on self-

organizing radial basis function neural network 

(SORBFNN) is proposed for nonlinear systems. This 

RTMPC has its simplicity in parallelism to model predictive 

control design and efficiency to deal with computational 

complexity. First, a SORBFNN with concurrent structure 

and parameter learning is developed as the predictive model 

of the nonlinear systems. The model performance can be 

significantly improved through SORBFNN, and the 

modeling error is uniformly ultimately bounded. Second, a 

fast gradient method (GM) is enhanced for the solution of 

optimal control problem. This proposed GM can reduce 

computational cost and suboptimize the RT-MPC online. 

Then, the conditions of the stability analysis and steady-

state performance of the closed-loop systems are presented. 

Ramadan Hedjaz [2] have explained an adaptive neural 

network model predictive control (ANNMPC) where a 

neural model identification block is incorporated in the 

scheme and online update of the weights is provided when 

the process is subject to parameters variations and 

uncertainties. Simulations have been carried out to show the 

robustness of this control algorithm.  

R. Stefan et al.[3] introduce fast gradient methods that 

allow one to compute a priori the worst case bound required 

to find a solution with pre-specified accuracy. They 

proposes to use Nesterov's fast gradient method for the 

solution of linear quadratic model predictive control (MPC) 

problems with input constraints. The main focus is on the 

method's a priori computational complexity certification 

which consists of deriving lower iteration bounds such that a 

solution of pre-specified sub optimality is obtained for any 

possible state of the system. A cold- and warm-starting 

strategies and provide an easily computable lower iteration 

bound for cold-starting and an asymptotic characterization 

of the bounds for warm-starting. Moreover, we characterize 

the set of MPC problems for which small iteration bounds 

and thus short solution times are expected. 

 

Yang Wang et al.[4] introduces a widely recognized 

shortcoming of model predictive control (MPC) is that it can 

usually only be used in applications with slow dynamics, 

where the sample time is measured in seconds or minutes. A 

well known technique for implementing fast MPC is to 

compute the entire control law offline, in which case the 

online controller can be implemented as a lookup table. This 

method works well for systems with small state and input 

dimensions (say, no more than 5), and short time horizons. 

In this paper we describe a collection of methods for 

improving the speed of MPC, using online optimization. 

These custom methods, which exploit the particular 

structure of the MPC problem, can compute the control 

action on the order of 100 times faster than a method that 

uses a generic optimizer.  

Yunpen Wang et al.[5] present a neuro dynamic 

approach to model predictive control (MPC) of unknown 

nonlinear dynamical systems based on two recurrent neural 

networks (RNNs). The echo state network (ESN) and 

simplified dual network (SDN) are adopted for system 

identification and dynamic optimization, respectively. First, 

the unknown nonlinear system is identified based on the 

ESN with input-output training and testing samples. Then, 

the resulting non convex optimization problem associated 

with nonlinear MPC is decomposed via Taylor expansion. 

To estimate the higher order unknown term resulted from 

the decomposition, an online supervised learning algorithm 

is developed. Next, the SDN is applied for solving the 

relaxed convex optimization problem to compute the 

optimal control actions over the predicted horizon. The 

proposed RNN-based approach has many desirable 

properties such as global convergence and low complexity. 

It is shown that the RNN-based nonlinear MPC scheme is 

effective and potentially suitable for real-time MPC 

implementation in many applications.  

Lezana et al. [6] develop a finite state model predictive 

control strategy for flying capacitor (FC) converters. This 

method controls output currents and voltages and also the 

FC voltage ratios. This allows one to increase the number of 

output voltage levels, even at high power factor load 

conditions and without having to increase the number of 

capacitors and switches. Multilevel converters and flying 

capacitor (FC) converters are an attractive alternative for 

medium-voltage applications. FC converters do not need 

complex transformers to obtain the DC-link voltage and also 

present good robustness properties, when operating under 

internal fault conditions. Unfortunately, with standard 

modulation strategies, to increase the number of output 

voltage levels of FC converters, it is necessary to increase 

the number of cells and, hence, the number of capacitors and 

switches. 

 

F. Oldewurtel et al. [7] presents an investigation of how 

Model Predictive Control (MPC) and weather predictions 

can increase the energy efficiency in Integrated Room 

Automation (IRA) while respecting occupant comfort. 

IRA deals with the simultaneous control of heating, 

ventilation and air conditioning (HVAC) as well as blind 
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positioning and electric lighting of a building zone or room 

such that the room temperature as well as CO2 and 

luminance levels stay within given comfort ranges. MPC is 

an advanced control technique which, when applied to 

buildings, employs a model of the building dynamics and 

solves an optimization problem to determine the optimal 

control inputs. In this paper it is reported on the 

development and analysis of a Stochastic Model Predictive 

Control (SMPC) strategy for building climate control that 

takes into account the uncertainty due to the use of weather 

predictions. In a first step the potential of MPC was assessed 

by means of a large-scale factorial simulation study that 

considered different types of buildings and HVAC systems 

at four representative European sites. Then for selected 

representative cases the control performance of SMPC, the 

impact of the accuracy of weather predictions on the control 

performance, as well as the tenability of SMPC were 

investigated. The findings suggest that SMPC outperforms 

current control practice in terms of both, energy efficiency 

and occupant comfort.  

Guang Li and Michael R.Belmont [8] have explained 

the model predictive control (MPC) of a single sea wave 

energy converter (WEC). Here they using control schemes 

which constrain certain quantities, such as the maximum 

size of the feedback force, the energy storage for actuators 

and relative heave motion, it was possible for control to not 

only improve performance but to directly impact strongly on 

design and cost. Motivated by this fact, a novel objective 

function was adopted in the MPC design, which brings 

obvious benefits: First, the quadratic program (QP) derived 

from this objective function was easily convexified, which 

facilitates the employment of existing efficient optimization 

algorithms. Second, this approach was trade off the energy 

extraction, the energy consumed by the actuator and safe 

operation. Moreover, an alternative QP was also formulated 

with the input slew rate as optimization variable, so that the 

slew rate limit of an actuator was explicitly incorporated 

into optimization. All these benefits promote the real-time 

application of MPC on a WEC and reduced cost of 

hardware.  

M. Maasoumya et al. [9] have explained the handling 

model uncertainty in model predictive control for energy 

efficient buildings. Here two methodologies to handle model 

uncertainty for building MPC. First, we explained a 

modelling framework for online estimation of states and 

unknown parameters leading to a parameter-adaptive 

building (PAB) model. Second, they explained a robust 

model predictive control (RMPC) formulation to make a 

building controller robust to model uncertainties. The results 

from these two approaches were compared with those from 

a nominal MPC and a common building rule based control 

(RBC). The results were then used to develop a 

methodology for selecting a controller type (i.e. RMPC, 

MPC, or RBC) as a function of building model uncertainty. 

RMPC was found was superior controller for the cases with 

an intermediate level of model uncertainty (30–67%), while 

the nominal MPC was preferred for the cases with a low 

level of model uncertainty (0–30%). Further, a common 

RBC outperforms MPC or RMPC if the model uncertainty 

was goes beyond a certain threshold (e.g. 67%).  

Chi-Huang Lu and Ching- Chih Tsai [10] have 

explained an adaptive predictive control with recurrent 

neural network prediction for industrial processes is 

presented. The neural predictive control law with integral 

action is derived based on the minimization of a modified 

predictive performance criterion. The stability and steady-

state performance of the closed-loop control system are well 

studied. The proposed method is demonstrated by stabilizing 

and controlling the transient response of a variable-

frequency oil cooling process, a critical component in high-

speed machine tools. This type of process has been widely 

used to provide appropriate oil coolant temperature for 

machine tools such as cutting, milling, and drilling 

machines. Such a process refers to the complicated oil-

cooling procedure of the variable frequency compressor and 

the heat exchange system, thereby generating nonlinear and 

time-delay dynamic behavior. To enable good 

manufacturing performance of the machine tools, the 

temperature controller must precisely adjust rotational speed 

of the variable-frequency induction motor based on analog 

control signals.  

The recurrent neural network (RNN) that consists of 

feed forward and feedback connections is well known to be 

capable of modeling and controlling nonlinear systems. 

Since the recurrent neuron has an internal feedback loop to 

size the dynamic response of a system without external 

feedback through delay, the RNN has shown superiority to 

the feed forward neural network [11], [12]. In the past 

decade , several researchers have extensively investigated 

RNN-based predictive control with its applications to 

industrial processes.  

Min Han et al. [13] implement a dynamic feed forward 

neural network (DFNN) is proposed for predictive control, 

whose adaptive parameters are adjusted by using Gaussian 

particle swarm optimization (GPSO) in the training process. 

Adaptive time-delay operators are added in the DFNN to 

improve its generalization for poorly known nonlinear 

dynamic systems with long time delays. Furthermore, GPSO 

adopts a chaotic map with Gaussian function to balance the 

exploration and exploitation capabilities of particles, which 

improves the computational efficiency without 

compromising the performance of the DFNN. The stability 

of the particle dynamics is analyzed, based on the robust 

stability theory, without any restrictive assumption. A 

stability condition for the GPSO + DFNN model is derived, 

which ensures a satisfactory global search and quick 

convergence, without the need for gradients. The particle 
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velocity ranges could change adaptively during the 

optimization process. 

 

III. NEURAL NETWORK AND BACK PROGATION 

AN OVERVIEW 

Identification of dynamic systems is essential for adaptive 

control. The definition of the adaptive system can be 

formulated as follows: Adaptive control systems adjust the 

parameters or configuration of one part of the system 

(controller) to the changes of the parameters or 

configuration of another part of the system (controlled 

system) so that an optimal behavior of the whole system is 

ensured on the basis a of the chosen criterion. Obviously, to 

obtain information on the dynamic behavior of the whole 

system - to identify it. One approach is the monitoring of the 

system characteristics, refinement and thus eliminating 

potential changes [14]. A frequently used identification 

method is the least-squares method. Its advantage is fast 

convergence of the model parameters, and storage of 

previous input values u, and system outputs y. The main 

negative feature of the methods is the computation of unreal 

hypothetical estimates of parameters at a short sampling 

period T0. A short sampling period, however, is desirable 

for control. At a shorter sampling period the introduced 

defect is more easily controlled [15]. A shorter sampling 

period is therefore desirable, and other identification 

techniques must be sought. The neural network seems to be 

a desirable solution because of its adaptation characteristics.  

The template is used to format your paper and style the text. 

All margins, column widths, line spaces, and text fonts are 

prescribed; please do not alter them. You may note 

peculiarities. For example, the head margin in this template 

measures proportionately more than is customary. This 

measurement and others are deliberate, using specifications 

that anticipate your paper as one part of the entire 

proceedings, and not as an independent document. Please do 

not revise any of the current designations. 

 

A. Neural Approach  

A formal neuron has n real inputs x1,…,xn. The 

inputs are evaluated using corresponding real synaptic 

weights w1,…,wn defining their “throughput“. A neuron 

transforms input data into output data based on the transfer 

function. Individual neurons can be arranged to form a 

neural network – the neurons are interconnected so that a 

neuron output is an input to multiple neurons. The number 

of neurons and their interconnections in the network 

determine the neural network architecture. The so-called 

feedforward networks are used in control technology to 

implement controllers or, for example, to identify process 

parameters. In a linear model of a process it seems 

beneficial to use only a single neuron with a linear transfer 

function for identification. The advantageous and 

distinguishing feature of neural networks is their ability to 

learn. The network in the adaptive mode abstracts and 

generalizes the function character in the process of learning 

from training patterns. The learning algorithm is an 

optimization method capable of finding weight coefficients 

and thresholds for a given neural. Network and a training 

set. There are a number of learning algorithms. Those that 

are used most frequently are the back propagation (BP) 

algorithm and the Liebenberg - Marquardt (LM) algorithm.  

 

B. Batch Training  

The preparation of an appropriate training set is 

one of the major factors affecting the final training of the 

network. The data contained in it must sufficiently cover the 

problem area. A discreet description of the dynamic system 

can be obtained using the differential equation. 

 

y(k)=b1u(k −1)+...+bnb u(k −nb)− a1y(k )−...−ana y(k 

−na) (1) 

 

Where y(k) is the output parameter value in the k-th 

sampling moment. Only the previously obtained values are 

used (ARX model). The identification should result is 

obtaining the same response of the identified configuration y 

and model ym to the initiation signal u. The method of 

preparing the training set is apparent from equation (1). In 

step k the vector of previous models X = [u(k-1), … u(k-nb), 

-y(k-1), … -y(k-na)] is submitted to the network input, and 

trained to the current configuration response d = y(k). If the 

network is to be used for on-line identification (control), it 

must be trained to more than one training pattern X, d. The 

batch-training principle is to create batch of p elements. For 

system order n = 2 structure of batch is 

 
 

d =[d1,d2 ,...,dp ]=[y(n+ 2), y(n+3),.. , y(p + n+1)] (2) 

 

In time t = 0 s data collection starts, p+n+1 steps 

take place (on the condition nb = na = n). When the batch is 

full, the network is trained to in this manner prepared 

training set. The older pattern (X1, d1) is removed in the 

next sample point and new pattern (Xp+1, dp+1) is added to 

set.  

 

C. Back propagation Algorithm (BP)  

This algorithm is based on minimizing the error of 

the neural network output compared to the required output. 

The required function is specified by the training set (a 
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sequence of input / required network output pairs). The error 

of network E relative to the training set is defined as the sum 

of the partial errors of network Ek relative to the individual 

training patterns and depends on network configuration w 

 
 

Where p - number of available patterns, Ek - partial network 

error, Y - set of output neurons.  

The new configuration in time t > 0 is calculated as follows. 

 
𝑤𝑗𝑖 𝑘 =𝑤𝑗𝑖 𝑘−1 −𝛼 𝜕𝐸𝜕𝑤𝑗𝑖𝛽 𝑤𝑗𝑖 𝑘−1 −𝑤𝑗𝑖 𝑘−2 (4) 
 

Where 0 < α < 1 is the speed of learning, β is the 

momentum. [16].  

The speed of training is dependent on the set 

constant α. If a low value is set, the network weights react 

very slowly. On the contrary, high values cause divergence 

the algorithm fails. Therefore the parameter α is set 

experimentally. If the neural network is to be used as a 

model in an adaptive system, for real industrial process 

control, the divergence must be prevented. In order to avoid 

it, the algorithm is often modified, the parameter α can be 

adjusted in the progress of training in dependence on the 

network error E. The neural network is submitted the 

training set patterns. The instantaneous error 

E(w(k)),∂E(w(k)) ∂w(k) , is determined, and a new weight 

configuration w(k+1), then E(w(k+1)) are calculated. Now, 

we have to find out if the network training error was 

reduced. If 

 

E(w(k +1)) < E(w(k)) (5) 

 

Is fulfilled, the new configuration of network eights is 

accepted, the value of parameter α is increased. Otherwise 

constant α is decreased and configuration w(k+1) is 

recalculated.  

 

IV. LEVENBERG-MARQUARDT ALGORITHM 

(LM) 

This algorithm is a variant of the Gauss-Newton 

optimization method. The new configuration of weights in 

step k+1 is calculated as follows  

 

w(k + 1) = w(k ) − (J T J + λI )−1 J T ε(k ) ( 6 )  

 

The Jacobi’s matrix for single neuron can be written as 

follows: 

 
 

Where is w - vector of the weights, w0 - bias of neuron, ε - 

error vector (the difference between the actual and the 

required value of the network output for the individual 

pattern). 

 

Parameter λ is modified based on the development of error 

function E. Should the step cause a reduction of E, we 

accept it. Otherwise we change parameter λ, reset the 

original value and recalculate w(k+1) [17].  

 

V. CONCLUSION  

The primary intention of research is to design a model 

predictive control (MPC) using integration of Liebenberg 

Marquardt (LM) based back propagation (BP) and group 

search optimization. Generally, model predictive control 

(MPC) is a powerful model based control technique, which 

explicitly optimizes the overall performance of a system to 

be controlled. Also, it employs an explicit prediction model 

of the plant to optimize future plant behavior. 
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